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Abstract

Large Language Models (LLMs) have shown significant problem-solving capabili-1

ties across predictive and generative tasks in chemistry. However, their proficiency2

in multi-step chemical reasoning remains underexplored. We introduce a new3

challenge: molecular structure elucidation, which involves deducing a molecule’s4

structure from various types of spectral data. Solving such a molecular puzzle, akin5

to solving crossword puzzles, poses reasoning challenges that require integrating6

clues from diverse sources and engaging in iterative hypothesis testing. To address7

this challenging problem with LLMs, we present MolPuzzle, a benchmark compris-8

ing 234 instances of structure elucidation, which feature over 18,000 QA samples9

presented in a sequential puzzle-solving process, involving three interlinked sub-10

tasks: molecule understanding, spectrum interpretation, and molecule construction.11

Our evaluation of more than 10 LLMs reveals that the best-performing LLM, GPT-12

4o, performs significantly worse than humans, with only a small portion (1.4%)13

of its answers exactly matching the ground truth. However, it performs nearly14

perfectly in the first subtask of molecule understanding, achieving accuracy close15

to 100%. This discrepancy highlights the potential of developing advanced LLMs16

with improved chemical reasoning capabilities in the other two sub-tasks. Our17

MolPuzzle dataset and evaluation code are available at this link.18

1 Introduction19

Artificial intelligence (AI) is revolutionizing the field of chemistry, influencing diverse sectors such as20

industrial chemical engineering [1, 2], drug discovery [3], and chemistry education [4]. In particular,21

recent studies have highlighted the success of large language models (LLMs) in addressing predictive22

challenges in chemistry, including molecular property prediction [5], reaction prediction [6], and23

experiment automation [7]. These advancements suggest significant potential for AI to enhance24

efficiency and innovation across these critical areas.25

We introduce a new chemical challenge to AI, molecular structure elucidation. While this critical26

task has been explored in other contexts, it remains unexplored for large language models (LLMs),27

extending beyond familiar predictive and generative domains such as property or reaction prediction,28

and representing a shift toward complex problem-solving. Analogous to solving a detailed cross-29

word puzzle, molecular structure elucidation can be seen as a molecular puzzle. It requires the30
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Figure 1: A crossword puzzle (left), and a molecular structure elucidation puzzle (right)

integration of multifaceted data, iterative hypothesis testing, and a deep understanding of chemical31

cues, much like piecing together clues across a crossword grid to form a coherent solution. Fig. 132

illustrates the problem of molecular structure elucidation alongside its analogical counterpart, the33

crossword puzzle, highlighting the parallels in strategy and complexity between these two intellectual34

challenges.35

Just as a crossword puzzle requires figuring out words based on given clues and fitting them together36

in a grid, molecular structure elucidation involves deducing a molecule’s structure from various types37

of data such as nuclear magnetic resonance (NMR), infrared spectroscopy (IR), mass spectrometry,38

and others. Each type of data provides clues about different aspects of the molecular structure. In39

a crossword, we integrate clues from across different directions and hints to form words that fit40

together correctly. Similarly, in molecular structure elucidation, we need to integrate information41

from different spectroscopic methods to form a consistent picture of the molecule. For example,42

IR spectra reveal molecular vibrations and functional groups, NMR provides information about43

the framework of hydrogen and carbon atoms, while mass spectrometry can offer insights into the44

molecular weight and possible fragmentations.45

Nevertheless, molecular structure elucidation is a challenging and time-consuming task. Training46

undergraduate students in chemistry to solve these puzzles has been a part of the curriculum be-47

cause determining the structure of molecules is a fundamental skill in the field. Typically, even a48

single molecule puzzle question on a final exam can take 10 to 15 minutes to solve[8], demanding49

considerable memory and processing skills from the students. In the domain of complex molecule50

research, the process of molecular deduction can become even more complex and time-consuming.51

Therefore, fully automating this process is highly beneficial for accelerating the design of new52

materials and drugs, as well as enhancing the efficiency of chemical research[9, 10]. However, it53

remains a challenging task due to the complexities involved in interpreting spectral data and solving54

intricate reasoning problems associated with molecular structures [11].55

In this work, we aim to present molecular structure elucidation in formats that LLMs can effectively56

process. By adapting this complex task to be compatible with LLMs, we explore their potential as57

promising tools in chemical research. If successful, LLMs could significantly accelerate scientific58

discovery in chemistry, transforming how we approach and solve intricate molecular puzzles.59

To achieve our objectives, we first introduce a novel dataset named MolPuzzle, which includes60

234 instances of structure elucidation challenges inspired by common chemistry tasks. Unlike61

datasets used in predictive or generative tasks, which typically consist of a collection of independent62

samples and are relatively straightforward to construct, each instance in the MolPuzzle dataset is63

uniquely complex. It is structured as a sequential process involving three interlinked sub-tasks:64

molecule understanding, spectrum interpretation, and molecule construction. These instances65

are accompanied by multimodal data, including images of IR, MASS, H-NMR, and C-NMR spectra,66

alongside their corresponding molecular formulas. Presenting such a complex, multimodal problem in67

a format that LLMs can effectively process presents a unique challenge. We, a team of AI researchers68

and chemists, are dedicated to formulating the molecule puzzle instances in descriptive languages69

that are accessible to LLMs. Our focus is on ensuring the utility of these instances, as well as their70

comprehensive coverage over various scenarios and challenges that mimic real-world conditions. By71

doing so, MolPuzzle opens the door for LLMs to contribute meaningfully to the field of chemistry,72

potentially accelerating scientific discoveries and innovations.73
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Second, we present our effort to automate the solving of molecular structure elucidation using LLMs.74

While certain sub-tasks, such as translating an IR spectrum into a molecular formula, may be solvable75

by encoder-decoder models [12], the comprehensive resolution of the entire molecular puzzle likely76

requires the advanced planning and reasoning capabilities of LLMs. We tested 11 state-of-the-art77

LLMs including GPT-4o, Gemini-pro, and Claude-3-opus. We also conducted a human baseline to78

compare the performance of humans and LLMs in solving the same puzzles. The key findings are:79

1) GPT-4o significantly outperforms other LLMs; 2) The best-performing LLM, GPT-4o, performs80

significantly worse than humans, with only a small portion (1.4%) of its answers exactly matching81

the ground truth; and 3) GPT-4o’s performance primarily collapses in the Stage-2 of spectrum82

interpretation and gets worse in the Stage-3 of molecule construction, although it performs nearly83

perfectly in Stage-1 of molecule understanding (with accuracy close to 100%).84

To summarize, our key contributions in this work are the presentation of:85

• A new reasoning problem for AI community. As the focus of AI development has evolved86

from solving predictive tasks and generative tasks to engaging in complex reasoning tasks—akin87

to system 2 level thinking—we introduce a reasoning task centered around molecular structure88

elucidation. This crucial problem from the field of chemistry sets a high benchmark for AI models89

to reach. Solving this task requires AI models to possess the ability to interpret spectral images,90

engage in complex reasoning, and plan effectively across extended workflows. This not only91

challenges the current capabilities of AI but also pushes the boundaries of what AI can achieve in92

scientific domains, particularly in understanding and manipulating molecular structures.93

• A new light of AI solutions for chemistry community. By proposing the MolPuzzle dataset,94

we establish another bridge between the fields of AI and chemistry. This initiative leverages the95

important capabilities of multimodal LLMs, providing the chemistry community with innovative96

solutions to accelerate the process of structure elucidation. Our initial exploration serves as a97

demonstration of the potential for these technologies. It sets the stage for further collaborative98

efforts, inspiring researchers from both domains to collaboratively explore new frontiers in scientific99

discovery.100

The paper is organized as follows. Section 2 presents the related work. In Section 3, we elaborate101

on the curation of the MolPuzzle dataset. In Section 4, we report the usage of multimodal LLMs in102

solving MolPuzzle. In Section 5, we discuss the main findings and directions opened by this work. In103

section 6, we discuss the broader impact of our work. Last, we summarize the study in Section 7 and104

offer our conclusions.105

2 Related Work106

Molecular Structure Elucidation. Historically, chemists used basic methods such as crystalliza-107

tion, melting point determination, and simple reactivity tests to hypothesize about a molecule’s108

structure. As technology advanced, tools like infrared spectroscopy (IR), nuclear magnetic resonance109

(NMR), and mass spectrometry transformed the process, enabling precise molecular insights and110

revolutionizing chemical analysis. Recently, Alberts et al. [12] utilized a transformer-based model111

to predict SMILES strings from IR spectra, later extending this architecture to NMR data analysis112

[13]. However, much of the existing research focuses on molecule elucidation using single-type113

spectrum data, which may suffice for simple molecules. In practice, complex molecules cannot be114

fully elucidated from a single spectrum since each type of spectrum provides only partial structural115

information. In our study, we aim to leverage the reasoning and planning capabilities of multimodal116

large language models (MLLMs) to integrate diverse spectral data, addressing the challenges of117

complex real-world chemistry tasks. Our focus is on solving the entire puzzle using multiple clues,118

rather than merely deciphering one word from a single clue.119

Multimodal Benchmarks for LLMs. With the advancements in developing multimodal LLMs120

[14, 15, 16, 17], a number of multimodal benchmarks have been curated. These benchmarks are121

crucial for evaluating and refining the capabilities of MLLMs to process and integrate diverse data122

types, such as text, images, and audio, for a cohesive understanding. Notably, a benchmark proposed123

by Yue et al. [18] assesses the reasoning abilities of MLLMs in various college-level subjects.124
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Similarly, MathVista [19] explores MLLMs’ multimodal reasoning capabilities in mathematics, while125

Yin et al. [20] introduced LAMM, a dataset focusing on multimodal instruction tuning. Our research126

shifts the focus to the chemistry domain [6]. To our knowledge, this study is the first to adopt a127

realistic chemistry task for MLLM processing and to conduct a thorough evaluation of these models’128

proficiency in chemistry-related reasoning and image analysis. This specialized focus will enhance129

our understanding of MLLMs’ capabilities within a specific scientific domain.130

3 The MolPuzzle Dataset131

Existing benchmarks of chemical tasks primarily focused on predictive or generative tasks involving132

collections of independent samples that were relatively straightforward to construct. In contrast,133

our dataset, MolPuzzle, aims to characterize an intertwined assessment of chemistry reasoning and134

visual understanding, testing the application of AI-assisted technology towards broader scientific135

discovery. Our data collection process is rigorously designed and implemented by a team uniquely136

qualified for this task, consisting of esteemed researchers in chemistry and experienced AI specialists137

who have previously tackled complex chemistry problems. This collaboration ensures that the138

MolPuzzle dataset not only accurately reflects real-world chemical phenomena and challenges but is139

also structured in a way that optimally facilitates access and usability for LLMs.140

The basic principles guiding our data curation for the MolPuzzle dataset are: 1) ensuring compre-141

hensive coverage by including a wide range of tasks that synthesize visual context with chemical142

knowledge, facilitating thorough evaluations; 2) varying levels of difficulty to challenge LLMs143

and highlight their potential limitations; 3) ensuring robust assessment outcomes, i.e., the results144

are definitive and reliable; and 4) incorporating human expert analysis to identify strengths and145

weaknesses in model performance, significantly enhancing our understanding of LLMs capabilities.146

In this section, we outlined the construction process for the MolPuzzle dataset. We detailed the147

creation of puzzle tasks in three stages (3.1), as well as the QA pairs involved in these tasks (3.2).148

Examples are presented in Fig. 2.149

3.1 Task Construction150

Just like a word puzzle where each clue progressively reveals the final answer, the solution to a151

molecule puzzle is a SMILES string that captures the interconnected substructures of a molecule. We152

design our molecule puzzles so that solving one requires the accurate identification and integration of153

each substructural clue, gradually unveiling the complete SMILES representation of the molecule.154

This approach is inspired by the analytical strategies employed by chemists in the real world, who155

interpret spectral data and chemical properties to deduce the structures of unknown molecules. Our156

puzzle-building process mirrors this scientific exploration, arranging clues in a sequence from simple157

to complex, where each clue builds upon the insights gained from the previous one, requiring precision158

and careful thought at every stage. We next provide more details on our clue design methodology.159

The Initial Stage (Molecule Understanding). In designing a molecule puzzle, the first stage involves160

determining how many building blocks, or substructures, are available. This foundational step is161

crucial as it sets the stage for constructing the molecule’s complete structure, akin to identifying the162

key pieces in a complex jigsaw puzzle. Starting with the initial hint: A molecular formula, derived163

from a mass spectrum, indicates the exact types and numbers of atoms in a molecule (e.g., C15H22O2,164

representing carbon, hydrogen, and oxygen), chemists can begin to deduce possible structures from165

the degree of saturation which is calculated based on the number of rings and multiple bonds166

present in the molecule, the potential for forming aromatic rings, or the presence of functional167

groups. The initial information provides a preliminary range of building blocks, which can later be168

selected and assembled to solve the molecular puzzle. To benchmark the capability of LLMs in this169

stage, we developed 26 unique templates (see Appendix A.2 for details), targeting key analytical tasks170

such as saturation identification, aromatic ring identification, functional group identification, and171

saturation degree calculation. This initiative produced 6,318 QA-format pairs, effectively evaluating172

the models’ capacity to understand and process molecular data. Details of these samples are reported173

in Appendix A.3.174

4



Figure 2: Examples of QA pairs in the 3 stages of MolPuzzle

The Second Stage (Spectrum Interpretation). With the initial building blocks of the molecule175

identified from the molecular formula, the next critical step involves refining these components176

through detailed spectral analysis. Spectrum images such as IR, MASS, 1H-NMR, and 13C-NMR177

serve as new hints, each adding layers of information akin to clues in a complex puzzle. These178

spectral images are pivotal in confirming or revising the initial hypotheses about the molecule’s179

structure. For example, IR spectroscopy can verify the presence of specific functional groups, MASS180

spectrometry can provide the molecular MASS, molecule mass and fragmentation patterns, and NMR181

techniques detail the arrangement of hydrogen and carbon within the molecule. By integrating these182

new hints, researchers can construct a more robust and experimentally accurate model of the molecule.183

This process not only theoretically validates each building block but also ensures they align perfectly184

with empirical data, leading to a comprehensive understanding of the molecular structure. Given the185

importance of spectral images in this analysis, we have developed specialized question templates to186

evaluate the proficiency of LLMs in interpreting these images. For instance, we created 17 templates187

for IR and 12 for each of H-NMR, and C-NMR. Each template, such as ‘Analyze the IR spectrum’188

includes specific queries designed to extract detailed insights, such as ‘What does the absorption in189

3200-3600 suggest?’ This structure enables us to format the questions for Visual Question Answering190

(VQA), facilitating a systematic approach to query handling. Our method has successfully generated191

a significant repository of VQA format examples, comprising 3,978 for IR and 2,808 for each of192

MASS, H-NMR, and C-NMR. A detailed analysis of these tasks is available in Appendix A.4.193

The Final Stage (Molecule Construction). After completing the first two stages, we can assert that194

we have gathered the necessary building blocks to assemble the molecule. The assembly process will195

be guided by insights derived from NMR data. Specifically, 1H-NMR provides information about196

the hydrogen environment in the molecule, such as the number of hydrogen atoms, their types (e.g.,197

aliphatic, aromatic), and their connectivity. On the other hand, C-NMR offers detailed insights into198

the carbon framework, revealing how carbon atoms are distributed and linked within the molecule.199

The approach to assembling the final molecular structure is iterative. Starting with initial building200

blocks selected from the identified fragment pool, LLMs are prompted to select one structure from201

the pool step by step, based on the NMR guidance, until the maximum number of iterations is reached202

or the fragment pool is exhausted. This systematic addition ensures that each step in the assembly203

process not only fits with the previous structure but also aligns perfectly with the latest spectral data,204

driving us closer to the accurate molecular configuration. This approach results in a total of 1,171205

QA samples.206
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3.2 QA Sample Derivation207

The QA samples for Stage 1 and Stage 2 are automatically generated using their respective question208

templates (see Appendix A.2) and RDKit [21]. RDKit is an open-source cheminformatics toolkit209

widely employed for handling chemical informatics data, including molecular structures and finger-210

prints. This toolkit plays a role in ensuring that the responses, based on the SMILES strings from211

each molecule puzzle, are accurate and chemically valid. The distribution of these QA samples across212

different categories is illustrated in Fig. 4. They form a diverse collection of samples for evaluating213

LLMs’ ability to understand molecular formulas and spectra.214

The fragment of each QA pair at Stage 3 is initially generated by LLMs, i.e., responding to the215

prompt ‘select one fragment...’. To validate the reliability of these automated generations of QA216

pairs, experts—two Ph.D. candidates from the chemistry department—manually and independently217

verified 50 samples, labeling the generated fragments as ‘correct’ or ‘wrong’. Their verification218

was consistent and demonstrated that 67.4% of examples have correct fragment pools in automated219

generation. To ensure the quality of derived QA pairs in Stage 3, these chemists manually corrected220

the fragments pool for each instance in the benchmark.221

Fig. 3 reports the statistical distribution for the MolPuzzle dataset, which includes 234 puzzle222

instances (the reasoning of 234 different molecules). Since one puzzle can be solved by different223

paths, different numbers of QA samples are derived in three stages. We will next evaluate LLMs’224

performance in solving each puzzle, as well as their capability to solve individual questions.225

Statistic Number
Total MolPuzzle Instances 234
Stage-1 QA samples 6,318
- Num. of molecule formula 176
- Max question length 128
- Average question length 94
Stage-2 QA samples 12,402
- Num. of spectrum images 944
- Max question length 340
- Average question length 264
Stage-3 QA samples 1,171
- Maximum Iteration 7
- Max question length 356
- Average question length 238

Figure 3: Statistic of the MolPuzzle dataset

Figure 4: Inner ring: sample distribution in 3 stages.
Outer ring: sample distribution across categories in each
stage. SI: saturation identification, SDC: saturation de-
gree calculation, FGI: functional group identification,
ARI: aromatic ring identification, SA: spectrum analysis.

4 Solving MolPuzzle by Multimodal Large Language Models226

The reasoning capabilities of foundation models in the chemistry domain remain underexplored.227

Thus, our aim is to perform both qualitative and quantitative evaluations to systematically assess the228

reasoning and planning abilities of these models in visual chemistry contexts, using the MolPuzzle229

benchmark. We first conducted evaluation of a variety of LLMs for completing the individual tasks230

in each stage, including GPT-4o [22], GPT-3.5-turbo [23], Claude-3-opus [24], Gemini-pro [25],231

LLama-3-8B-Instruct [26], Vicuna-13B-v1.5 [27], Mistral-7B-Instruct-v0.3 [28], and in particular232

multimodal LLMs such as Gemini-pro-vision [25], LLava-Llama-3-8B [29], Qwen-VL-Chat [30],233

and InstructBlip-Vicuna-7B/13B [14]. Due to space limits, we present only selected results in Table 1234

and report the complete list of results in Appendix B. We then assess LLMs’ capability to solve the235

entire puzzles, specifically focusing on how effectively these models can derive the final molecular236

structure from provided hints (the questions in QA samples). The results are reported in Table 2.237

All tasks are evaluated in a zero-shot setting to determine the problem-solving capabilities of LLMs238

without prior fine-tuning on specific task data. The evaluation process consists of three steps:239

response generation, answer extraction, and score calculation. More details of the experimental240

settings including prompts and hyperparameters are presented in Appendix B.1.241
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Table 1: F1 scores (↑) of individual QA tasks in three stages. The best LLMs results are in bold font.
Tasks in stage 1 are SI-Saturation Identification, ARI-Aromatic Ring Identification, FGI-Functional
Group Identification, and SDC-Saturation Degree Calculation.

Stage-1 (Molecule Understanding) Tasks

Method SI ARI FGI SDC

GPT-4o 1.00±0.000 0.943±0.016 0.934±0.005 0.667±0.003
GPT-3.5-turbo 0.451±0.025 0.816±0.017 0.826±0.075 0.5±0.099
Claude-3-opus 0.361±0.009 0.988±0.015 0.934±0.001 0.856±0.016
Llama3 0.228±0.043 0.696±0.051 0.521±0.003 0.000±0.000
Human 1.00±0.000 1.000±0.000 0.890±0.259 0.851±0.342

Stage-2 (Spectrum Interpretation) Tasks

Method IR Interpretation MASS Interpretation H-NMR Interpretation C-NMR Interpretation

GPT-4o 0.656±0.052 0.609±0.042 0.618±0.026 0.639±0.010
LLava 0.256±0.026 0.101±0.021 0.118±0.008 0.254±0.015
Human 0.753±0.221 0.730±0.11 0.764±0.169 0.769±0.101

Stage-3 (Molecule Construction) Tasks

Method H-NMR Elucidation C-NMR Elucidation

GPT-4o 0.433±0.013 0.408±0.034
Llama3 0.211±0.012 0.342±0.007
Human 0.867±0.230 0.730±0.220

To gain an in-depth understanding of the performance of LLMs in comparison with human experts,242

particularly their failed cases, we invited six Ph.D. candidates in chemistry add acknowledgment243

laterto solve the puzzles in MolPuzzle, and also assess LLMs’ results. More comprehensive details244

of this human baseline and evaluation process are presented in Appendix B.2. The reported245

performance, including human baselines, is presented as an average with standard deviation over all246

samples.247

4.1 LLMs’ Performance on Solving Molecule Puzzles248

4.1.1 Addressing individual QA tasks in three stages249

In Table 1, we report the performance of selected LLMs on conducting individual QA tasks in the three250

stages, including GPT-4o, GPT-3.5-turbo, Claude-3-opus (three top-performing proprietary models),251

Llama-3-8B-Instruct (the best performing open-source model), and the reference human baseline252

performance. In stage 2, the variant of Llama3 for a multimodal setting, LLava-Llama-3-8B, is used253

for handling spectrum image analysis. Since each task involves performing a question-answering254

task, we evaluate the performance using F1 and accuracy by comparing the LLMs’ answers with the255

ground truth. F1 scores are reported in Table 1, while the accuracy and performance of more LLMs256

can be found in Appendix B.257

The results of Stage-1 (in Table 1 and Appendix Table 3) show that the GPT-4o model excels in these258

tasks (achieving near-perfect F1 score in 3 out of 4 tasks). The high scores in SI, AI, and FI suggest259

that LLMs are able to succeed in relatively straightforward chemistry analysis tasks, performing260

comparably to human experts. However, open-sourced models like LLama3 have limitations in261

addressing these tasks, possibly due to their limited reasoning abilities in chemistry text-reasoning262

tasks. In addition, GPT-4o’s comparative performance to humans indicates significant advancements263

in the use of LLMs for complex scientific tasks, suggesting a promising future for leveraging advanced264

LLMs to improve the efficiency of scientific analysis and discovery.265

For the multimodal tasks of Stage-2, GPT-4o remains the top performer, though it exhibits intermedi-266

ate performance in spectrum interpretation. The F1 scores for the four types of spectra average around267

0.6, indicating a moderate level of accuracy in this complex aspect of the challenge. This performance268

is notably less competitive compared to human baselines, which succeed in approximately 73-77% of269

the tasks across the four types of spectrum interpretation. This indicates that spectrum interpretation270

is inherently challenging. While GPT-4o has made significant strides in automated spectrum analysis,271
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Table 2: The performance of LLMs and human baseline in solving MolPuzzle. The best LLM results
are in bold font. Acc. stands for the Accuracy of Exact Match.

Method Acc. (↑) Levenshtein (↓) Validity (↑) MACCS FTS (↑) RDK FTS (↑) Morgan FTS (↑)

GPT-4o 0.014±0.004 11.653±0.013 1.000±0.000 0.431±0.009 0.293±0.013 0.232±0.007

Claude-3-opus 0.013±0.008 12.680±0.086 1.000±0.000 0.383±0.050 0.264±0.040 0.241±0.037

Gemini-pro 0.000±0.000 12.711±0.196 1.000±0.000 0.340±0.017 0.208±0.002 0.171±0.007

Human 0.667±0.447 1.332±2.111 1.000±0.000 0.985±0.022 0.795±0.317 0.810±0.135

there remains considerable room for improvement to bridge the gap between its capabilities and272

human expertise. More details are presented in Appendix B.4.273

The results for Stage-3 indicate that the most advanced LLM, GPT-4o, significantly underperforms274

compared to the human baseline, with nearly a 40% difference. This might be caused by the fact that275

the reasoning ability required for these tasks is complex and multifaceted. When information con-276

verges, such as identifying equivalent hydrogen or ring arrangements, a comprehensive understanding277

of the NMR peaks and their corresponding structures is essential. See more details in Appendix B.5.278

4.1.2 Addressing entire molecule puzzles279

For solving the entire molecule puzzles, the evaluation is limited to the three most advanced mul-280

timodal LMMs: GPT-4o [22], Claude-3-opus [24], and Gemini-pro [25], due to the involvement281

of spectrum image analysis in Stage-2. The results of these models are reported in Table 2, along282

with those from the human baseline. To comprehensively evaluate the performance, we employ two283

different types of metrics. The first type of metric measures the chemical similarity between the284

ground-truth molecules and the generated molecules, assessed using FTS (Fingerprint Tanimoto Simi-285

larity) [31] in terms of MACCS [32], RDK [21], and Morgan [33]. Since the generated molecules are286

in SMILES string format, we also employ natural language processing metrics including the Accuracy287

of Exact Match [34], and Levenshtein distance [35] (the minimum number of single-character editing288

required to transform one string into another). Finally, to evaluate whether constructed molecules are289

valid, we use RDKIT [21] to check the validity of constructed molecules and report the percentage of290

molecules that are confirmed as valid.291

The results in Table 2 show that the best-performed LLM, GPT-4o, is performing much worse than292

humans, indicating a huge gap between LLMs and humans in solving the molecule puzzles. It is293

worth noting that all the constructed molecules are valid, even though only a small portion of them294

(1.4%) exactly match the ground truth. Considering that the accuracy of the exact match is too strict,295

we use FTS to analyze more about the chemical closeness of LLMs’ answer to the ground truth. A296

MACCS FTS of 0.431 suggests that the generated molecules maintain a significant level of structural297

similarity. This indicates that even if the answers are not perfect replicas of the ground truth, they298

can still be chemically valid and potentially useful as structured hypotheses that could be relived by299

human scientists.300

4.2 Success and Failure Analysis301

Figure 5: Errors in solving the molecule puzzle
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The above analysis indicates that the most capable model, GPT-4o, performs nearly perfectly302

in Stage-1 of molecule understanding. However, its performance drops in Stage-2 for spectrum303

interpretation, and worsens further in Stage-3 for molecule construction. We investigate in-depth304

how GPT-4o eventually fails on most of the puzzles after progressing through the tasks of these three305

stages. With the help of human evaluators, we gathered all the intermediate steps involved in solving a306

molecule puzzle and engaged them to scrutinize these steps. Fig. 5 presents case studies that illustrate307

the iterative steps involved in Stage-3, showcasing the most common errors made by GPT-4o: the308

accumulation of errors in iterative steps, which can lead to catastrophic failures. Note that309

this stage focuses on selecting the correct fragments and assembling them step by step to form the310

final molecular structure. We find that GPT-4o can initially succeed in picking the correct fragment311

when the structure is comparatively simple. However, as the process progresses, it does no select312

structures that satisfy all the requirements indicated by the NMR data. This difficulty arises because313

the reasoning requirements expand dramatically as more information and additional constraints need314

to be incorporated. More qualitative examples can be found in Appendix B.6.315

5 Findings and Open Directions316

Our evaluation has revealed specific limitations of state-of-the-art LLMs in automating molecular317

structure elucidation. We urge further collaborative efforts from the AI and chemistry communities to318

design more effective solutions, especially for the tasks in Stage 2 and Stage 3. Based on our findings,319

we next present the open directions for future research and development.320

Development of Specialized Multimodal LLMs Spectrum Interpretation in Stage 2. As indi-321

cated in our results, the performance of LLMs notably declines beginning in Stage 2, where they322

struggle with the visual interpretation of 1H and 13C NMR spectra. This difficulty arises because323

NMR spectra feature sharp, unlabeled peaks that also display multiplicities with very small chemical324

shift differences, making them challenging to discern for visual models. These multiplicities contain325

important information on the chemical connectivity of the fragments. Similarly, closely spaced IR326

absorptions to identify key function groups. To address this, there is a significant opportunity to327

develop specialized multimodal LLMs that can more effectively interpret these subtle and complex328

spectral details.329

Development of New Strategies for Leveraging LLMs in Chemical-related Planning and Reason-330

ing. The failure analysis from Stage 3 has inspired us to explore more effective ways to capitalize331

on LLMs’ capabilities in planning and reasoning for fragment selection and assembly. The first imme-332

diate solution is to employ the chain-of-thought approach [36] to provide more effective instructions333

for solving the puzzle. However, despite our efforts to implement this method, the results were not334

satisfying and actually performed worse than those in the zero-shot setting we reported in the paper.335

We will continue the study and try different implementations. The second solution is to leverage336

LLMs as agents in a more dynamic and interactive manner. This approach involves incorporating337

feedback loops where LLMs can iteratively refine their responses based on new information or338

corrections. In this way, there is a hope to mitigate the accumulation of errors in iterative steps and339

prevent catastrophic failures.340

6 Broader Impact341

Our work has broad impacts across multiple dimensions. First, it offers valuable insights and342

recommendations for both AI researchers and chemists in academia and industry. These perspectives343

enhance the effective utilization of LLMs and guide future advancements in the field. Second,344

our approach to benchmarking and improving LLMs through real-world tasks like the MolPuzzle345

can also foster greater collaboration between computational scientists and chemists. By aligning346

AI technologies with traditional chemical research, these interdisciplinary efforts can accelerate347

the discovery of new materials, drugs, and chemical processes, potentially leading to significant348

advancements in healthcare and industry.349
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7 Conclusion350

In this paper, we introduced MolPuzzle, a new benchmark challenge to advance our capabilities in351

molecular structure elucidation. We evaluated state-of-the-art LLMs on this task, revealing their352

strengths and limitations in handling complex chemical reasoning. Our analysis highlights significant353

performance gaps, particularly in spectrum interpretation and molecule construction. These findings354

not only suggest ways to improve LLM performance but also set the stage for transforming approaches355

to chemical research. MolPuzzle serves as a critical step toward harnessing the potential of LLMs356

in chemistry, fostering innovation and collaboration within the AI and chemistry communities to357

enhance scientific inquiry and application.358
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A MolPuzzle Benchmark Details461

This section complements Section 3 with a fine-grained summary of the dataset collection, results462

validation, and evaluation procedure, along with a fuller characterization of the task instances and the463

corresponding prompts.464

A.1 Data Collection465

The initial molecules were selected by referencing the textbook Organic Structures from Spectra, 4th466

Edition, available as an online PDF on ResearchGate. We chose 234 molecules based on spectrum467

tasks involving IR, MS, 1H-NMR, and 13C-NMR to reflect a difficulty level suitable for graduate468

students[8].469

To address copyright concerns, we excluded molecules with publicly available mass spectrometry470

(MS) spectra in open-source databases from our study. The remaining spectra were sourced from471

public resources, notably the PubChem database[37]. For additional spectra that were not available,472

we used simulation methods[38][39] and provided a Jupyter notebook to generate these data, ensuring473

high-quality spectra for analysis. Our final dataset comprised 200 molecules.474

Given the challenges associated with NMR spectrum images, some spectra were obtained from475

simulated data in text format for 1H-NMR and 13C-NMR. This approach ensured clarity and accuracy476

in the evaluation of molecular structures.477

To assess the multiple-stage abilities of LLMs, we designed a unique question-and-answer evaluation.478

This framework tested the LLMs’ capabilities in interpreting and integrating data from different types479

of spectra, simulating real-world challenges. Details of this evaluation framework are provided in the480

next section.481

A.2 Template design482

Each template was crafted to target specific skills within molecular understanding. For instance,483

saturation identification challenges the models’ ability to discern the degree of saturation in a molecule,484

which is crucial for understanding its chemical reactivity and stability. Aromatic ring identification485

tests the models’ ability to recognize benzene-like structures, which are fundamental in organic486

chemistry due to their common occurrence and unique properties. Saturation degree calculation487

pushes the models to apply quantitative analysis, requiring not just recognition but also computation488

based on molecular structures.489

By diving deeper into the rationale behind each template and the kind of chemical knowledge they490

are designed to test, we can better appreciate how these tasks simulate real-world applications in491

chemistry. This approach not only tests the models’ basic recognition abilities but also their capacity492

to perform complex reasoning and apply theoretical knowledge practically. The template examples493

are in A.3.494
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A.3 Stage1 QA Samples495

A.4 Stage2 QA Samples496

A.5 Stage3 QA Samples497

B Evaluation Experiments498

B.1 Experimental Setting499

During our testing phase, we selected 100 questions and employed two distinct prompting strategies500

with the large language model (LLM). Initially, the LLM was tasked with directly answering the501
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questions. In a subsequent approach, the same queries were presented, but the model was prompted to502

execute a chain-of-thought reasoning process before responding. Each question in our dataset begins503

with a comprehensive description of the chemical context, along with specified answer formats and504

detailed guiding rules. To ensure a balanced representation of each task category, for tasks in Stage 1,505

the distribution ratio for Saturation Identification (SI), Functional Group Identification (FI), Aromatic506

Ring Identification (AI), and Saturation Degree Calculation (SC) is set at 2:3:3:2. In Stage 2, we507

have randomly selected 100 questions from each category of the spectrum. For Stage 3, we randomly508

selected 100 questions focused on H-NMR and C-NMR analyses.509

We carried out this evaluation over three rounds, analyzing responses using both accuracy and the510

F1 score for tasks involving Saturation Identification (SI), Functional Group Identification (FI), and511

Aromatic Ring Identification (AI). For Saturation Degree Calculation (SDC), which yields numerical512

results, we assessed accuracy by comparing the count of correct matches to the ground truth data.513

The detailed results are reported in Table A.3. To ensure that all results are presented in a way that514

facilitates direct comparison, only those using similar evaluation metrics(AI, FI, AI) are included515

in the main table. For the SI, AI, and FI tasks, we use the F1 score and Accuracy to evaluate their516

performance since they are classification tasks. For the SDC task, the answer is a numerical number,517

so we only use the accuracy score to measure the performance of the LLMs. This approach helps to518

keep the evaluation coherent and focused on comparable data points.519

B.2 Human Evaluation520

To evaluate the performance of large language models (LLMs) on specialized tasks against expert521

humans, we recruited six graduate students from chemistry department to solve the MolPuzzle522

benchmark. These students, having recently completed a graduate-level course in Molecular Structural523

Elucidation, represented a highly skilled group of human participants.524

For the experiment, we randomly selected six questions from the MolPuzzle dataset for each stage of525

the study. These questions were presented to the students in different formats according to the stage:526

In Stages 1 and 2, the questions were simple Yes/No or required short answers. In Stage 3, to align527

with the conventional methods chemists use to express chemical structures, students were asked to528

upload images of their hand-drawn structures instead of using SMILES strings. These images were529

manually compared to the ground truth to calculate scores.530

We also imposed self-regulated time constraints to mirror the challenging nature of molecular531

structural elucidation. Beyond individual stage evaluations, we presented each participant with a532

complete molecule puzzle, consisting of a formula and four spectral images. The students were tasked533

with solving these puzzles within a 20-minute time frame. Impressively, all participants successfully534

submitted their solutions within the allotted period.535

Our study included a component where human evaluators were involved to assess the performance536

of the AI models. To ensure the protection and ethical treatment of all participants, we conducted a537

thorough risk assessment. Potential risks identified included privacy concerns and the mental strain538

of repetitive tasks. Mitigation strategies, such as ensuring anonymity and providing breaks, were539

implemented to protect our evaluators.540

The study was submitted for review and received approval from our Institutional Review Board (IRB).541

The IRB approval number is [insert approval number], which verifies that our protocols met all ethical542

guidelines for research involving human subjects. Throughout the project, we adhered strictly to543

these protocols to ensure ongoing compliance with ethical standards.544

B.3 Stage1545

Molecule understanding requires comprehensive analysis and interpretation of molecular structures,546

with a focus on chemical properties and spectroscopic data. In our study, we created a dataset of547

234 molecules and developed eight distinct question templates across four categories: Saturation548

Identification(SI), Functional Group Identification(FI), Aromatic Ring Identification(AI), and549
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Saturation Degree Calculation(SC). These templates assess the ability to identify substructures,550

compute saturation levels, and infer structural presence, incorporating concepts in the chemistry551

reasoning process. Each question also necessitates a deep understanding of molecular bonding,552

stereochemistry, and functional group identification. Responses were generated using the RDKit553

library, ensuring precise and reliable answers grounded in established chemical informatics.554

Table 3: The accuracy(↑), F1 score(↑)in 4 different molecule understanding categories, the best LLMs
are in bold font.

Model CoT SI AI FI SC

F1 Acc F1 Acc F1 Acc Acc

GPT-4o - 1±0.0 1±0.0 0.943±0.016 0.944±0.015 0.934±0.005 0.966±0.0 0.667±0.003
GPT-4o ✓ 1±0.0 1±0.0 0.911±0.031 0.911±0.031 0.689±0.025 0.766±0.027 0.816±0.062
GPT-3.5 - 0.451±0.025 0.825±0.075 0.816±0.017 0.816±0.075 0.826±0.075 0.683±0.016 0.5±0.099
GPT-3.5 ✓ 0.448±0.026 0.816±0.008 0.798±0.025 0.800±0.027 0.526±0.053 0.622±0.031 0.533±0.131
Claude-3-opus - 0.361±0.009 0.556±0.023 0.988±0.015 0.988±0.015 0.934±0.001 0.966±0.001 0.856±0.016
Claude-3 ✓ 0.760±0.189 0.903±0.046 0.878±0.025 0.867±0.001 0.547±0.112 0.843±0.081 0.900±0.025
Gemini-pro - 0.285±0.020 0.399±0.040 0.775±0.093 0.788±0.083 0.646±0.052 0.748±0.051 0.200±0.004
Gemini-pro ✓ 0.391±0.045 0.651±0.108 0.685±0.088 0.688±0.087 0.562±0.018 0.629±0.023 0.283±0.062

LLama3 - 0.367±0.018 0.583±0.047 0.490±0.030 0.533±0.027 0.472±0.133 0.588±0.0 0.0±0.0
LLama3 ✓ 0.473±0.011 0.899±0.040 0.384±0.026 0.533±0.0 0.570±0.035 0.799±0.047 0.017±0.001
Vicuna-13b - 0.031±0.022 0.033±0.025 0.500±0.087 0.522±0.083 0.308±0.038 0.311±0.041 0.0±0.0
Vicuna-13b ✓ 0.380±0.023 0.616±0.062 0.342±0.006 0.522±0.157 0.516±0.080 0.855±0.016 0.0±0.0
Mistral-7b - 0.221±0.014 0.283±0.025 0.384±0.005 0.500±0.0 0.319±0.014 0.322±0.157 0.0±0.0
Mistral-7b ✓ 0.433±0.007 0.766±0.023 0.342±0.006 0.522±0.016 0.601±0.102 0.877±0.031 0.0±0.0

B.4 Stage2555

The Spectrum interpretation tasks mainly measure the capability of LLMs in analyzing images556

related to identifying key substructures indicated by the spectrum plot. In this study, we utilize557

four distinct types of spectral images: nuclear magnetic resonance (NMR), infrared spectroscopy558

(IR), mass spectrometry, and others. Each type of data offers insights into various aspects of the559

molecular structure. We’ve created specific question templates for each spectrum, targeting peak560

and substructure identification factors. These templates are designed manually and emphasize the561

intricate connection between the spikes or troughs in the figures and the structures of the molecules.562

Responses were generated using the RDKit library to ensure correctness.563

The findings from Stage 2 are presented in Table 4. We exclusively focus on the zero-shot learning564

outcomes, as our observations indicate that implementing chain-of-thought prompting leads to a565

deterioration in model performance. To address this limitation, we offer qualitative insights in B.6.566

Table 4: The accuracy(↑), F1 score(↑) for IR, MASS spectrum, H-NMR, and C-NMR interpretation
tasks."-" means the results are not interoperable

Model Stage-2 Tasks

IR Interpretation MASS Interpretation H-NMR Interpretation C-NMR Interpretation
F1 Acc F1 Acc F1 Acc F1 Acc

GPT-4o 0.656±0.052 0.713±0.06 0.609±0.042 0.767±0.042 0.618±0.026 0.864±0.007 0.639±0.107 0.892±0.049
Claude-3-opus 0.440±0.006 0.476±0.055 0.398±0.032 0.466±0.019 0.572±0.190 0.842±0.017 0.554±0.075 0.716±0.042
Gemini-3-pro-vision 0.194±0.002 0.119±0.016 0.116±0.036 0.124±0.038 0.545±0.048 0.851±0.062 0.492±0.016 0.619±0.044
LLava1.5-8b 0.256±0.026 0.414±0.044 0.101±0.021 0.104±0.26 0.118±0.008 0.186±0.011 0.254±0.015 0.472±0.023
Qwen-VL-Chat 0.243±0.027 0.392±0.043 0.125±0.006 0.116±0.021 0.255±0.007 0.611±0.031 - -
InstructBLIP-7b 0.239±0.020 0.263±0.014 0.101±0.021 0.104±0.26 - - 0.044±0.006 0.064±0.023
InstructBLIP-13b 0.239±0.020 0.263±0.014 0.101±0.021 0.104±0.26 - - 0.047±0.014 0.067±0.025

B.5 Stage-3567

Constructing a molecule involves a detailed analysis of NMR data, which is critical for understanding568

its structure. H-NMR data are essential as they provide information about the hydrogen environments569

within the molecule, including the number and types of hydrogen atoms (such as aliphatic or570
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aromatic), as well as their connectivity. Conversely, C-NMR data offer in-depth insights into the571

carbon framework, illustrating the distribution and linkage of carbon atoms within the molecule.572

In our study, to evaluate the ability of large language models (LLMs) to interpret NMR data, we573

generated 1,171 question-and-answer (QA) pairs. These pairs focus on key NMR interpretation tasks,574

such as counting hydrogen atom types and identifying substructures, which are critical for accurate575

analysis.576

Despite observing moderate accuracy from the LLMs in Stage 2 of our testing, we enhanced the577

quality of the QA pairs in Stage 3 by providing the LLMs with verified NMR data, generated by using578

nmrdb[? ]. This approach ensures that the data used is reliable and helps maintain the integrity of579

our results. The findings from Stage 2 are presented in Table. We exclusively focus on the zero-shot580

learning outcomes, as our observations indicate that implementing chain-of-thought prompting leads581

to a deterioration in model performance. To address this limitation, we offer qualitative insights in582

Table 5: The F1 score(↑) for H-NMR, and C-NMR Structure Elucidation

Method H-NMR Elucidation C-NMR Elucidation

GPT-4o 0.433±0.013 0.411±0.034
Claude-3-opus 0.395±0.008 0.313±0.029
Gemini-pro 0.333±0.012 0.308±0.031

Llama3 0.211±0.012 0.342±0.007
Vicuna-13b 0.181±0.013 0.244±0.001
Mistral-7b 0.131±0.032 0.122±0.027

B.6 Qualitative Results583

In this section, we present several examples using GPT-4’s chain-of-thought (CoT) reasoning to584

facilitate a clearer understanding of the results. We have enlisted two Ph.D. candidates from the585

chemistry department to evaluate these CoT outcomes. The analysis uses color coding to indicate the586

accuracy of the generated text: green signifies correct responses, red indicates incorrect ones, and587

yellow denotes responses that are partially correct.588

B.6.1 Stage 2 examples589

Figure 6: Human annotated IR spectrum interpretation
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Figure 7: Human annotated MASS spectrum interpretation

Figure 8: Human annotated H-NMR spectrum interpretation

B.6.2 Stage 3 examples590

Based on the observation in spectrum interpretation, it is safe to say that the GPT-4o model has a591

basic grasp of the concept and the task at hand, but their deficiency mainly resides in obtaining fully592

correct information from the spectrum images and also they lack in-depth understanding. As for the593

problems in Stage 3, although the GPT-4o outputs are mostly correct, they are too general which594

shows the poor understanding of GPT-4o models in solving this intricate task. The stage 3 task can595

be roughly broken down into 3 subtasks: obtaining the correct information from the spectrum image,596

deducing the correct structural information from the spectral information, and finally translating this597

structural information into a correct molecular structure. GPT-4o models seem to perform well in the598

second subtask, and moderately for simple structures in the third subtask but seem to be especially599

struggling with the first subtask in the case of NMR spectra. This indicates the gap in current LLMs600

in fully interpreting data therefore more advanced models and approaches should be developed to601

tackle the problem.602
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Figure 9: Human annotated C-NMR spectrum interpretation

Figure 10: Human annotated H-NMR Elucidation

B.6.3 Complex Molecules603

In addition to presenting molecules extracted from textbooks, we also demonstrate how the large604

language model (LLM) handles complex molecular structures. As illustrated in Figure 12, complex605

molecules typically have a larger pool of fragments. This expansion results in a greater number606

of valid elucidation paths, complicating the selection process for an appropriate starting point.607

Successfully navigating this enlarged pool necessitates an in-depth understanding of each fragment’s608

properties and the associated, more intricate NMR data. In this context, LLMs may struggle because609

they often lack the nuanced chemical intuition and detailed analytical capabilities that human experts610

possess. Such limitations can lead to inaccuracies in interpreting complex interactions within NMR611

spectra, making LLMs less reliable.612
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Figure 11: Human annotated C-NMR Elucidation

Figure 12: Complex molecule Structure Elucidation

C Compute Resources613

For the execution of various models in our experiments, distinct compute resources were utilized614

based on the model’s accessibility and computational requirements. Specifically, for models like615

Claude 3, GPT, and Gemini, we employed API calls to facilitate their operation, leveraging the616

existing infrastructure provided by their respective platforms. This approach allowed us to access617

these models without the need for local computational resources, thereby streamlining the process.618

Conversely, for all other open-sourced models employed in our study, we conducted the experiments619

locally using an NVIDIA A100 GPU. This high-performance computing unit was chosen due to its620

advanced capabilities in handling extensive computations and large model requirements efficiently.621
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(a) Did you include the code, data, and instructions needed to reproduce the main experi-635

mental results (either in the supplemental material or as a URL)? [Yes] , the code is636

available at https://github.com/KehanGuo2/MolPuzzle.637
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(b) Did you mention the license of the assets? [Yes]647
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(e) Did you discuss whether the data you are using/curating contains personally identifiable651
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(a) Did you include the full text of instructions given to participants and screenshots, if654
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